Propagating Jamming Fronts

Energy Loss in Granular Gas Clusters

 We explore the initial moments of impact between two dense granular clusters in a two-dimensional geometry. The particles are composed of solid CO2 and are levitated on a hot surface. Upon collision, the propagation of a dynamic “jamming front” produces a distinct regime for energy dissipation in a granular gas in which the translational kinetic energy decreases by over 90%. Experiments and associated simulations show that the initial loss of kinetic energy obeys a power law in time ΔE=Kt3/2, a form that can be predicted from kinetic arguments.

 

(a) Schematic of the experimental apparatus. An anodized aluminum plate with tilted boundaries is heated to
100C. Two clusters of solidCO2 particles impact in the middle of the plate. Silicone rubber strips prevent the particles from falling
off the plate edges. The collision is filmed with a high-speed camera from above. (b) Sublimated gas from beneath a particle creates a
high-pressure region which supports its weight. This leads to nearly frictionless translational motion. (c) Ratio of final to initial kinetic
energy versus relative initial velocity for single-particle collisions. There is a spread of values for the energy loss, even for similar
relative velocities 

(a) Images of the particles from an
experiment during the initial moments of the collision.
(b) Snapshots from a simulation of the collision between two
elliptical clusters, each composed of 5000 particles. The initial
area fraction inside each cluster is 0 ¼ 0:71. In both sets of
images, the color indicates the magnitude of the velocity, as
denoted by the scale bar on the bottom. Upon impact, a jamming
front spreads quickly and eventually encompasses all of the
particles when t=tjam ¼ 1.

 

 

Relative loss of kinetic energy immediately after impact for four experimental data sets (black dots) and the simulation of elliptical clusters (solid red line). The dashed line is the pre- diction [Eq. (4)] using parameters from the simulation. The inset compares five simulations using the same initial conditions but with different dissipative forces. Two have viscous forces that are 5 stronger and 5 weaker than in the main figure, and two others have friction coefficients of mu= 0.1 and mu= 0.9 The results are virtually identical in all cases. 

 

 

PRL Cover Story Oct 2013
Energy Loss at Propagating Jamming Fronts in Granular Gas Clusters
Justin C. Burton, Peter Y. Lu, and Sidney R. Nagel, Phys. Rev. Lett. 111, 188001. DOI:10.1103/PhysRevLett.111.188001